terça-feira, 20 de agosto de 2019


Efeito magnetocalórico é um fenômeno que consiste nas mudanças reversíveis de temperatura de um corpo resultantes de mudanças na sua magnetização.[1]

    O efeito magnetocalórico[editar | editar código-fonte]

    O efeito magnetocalórico (EMC) é um fenômeno termomagnético caracterizado por uma mudança na temperatura de um material magnético quando este é colocado ou retirado da influência de um campo magnético. O EMC é intrínseco a todos os materiais magnéticos, sendo mais intenso nas vizinhanças de transições de fase magnéticas, especialmente as de primeira ordem, pois, neste caso, as variações de entropia são mais intensas.
    Um dos exemplos mais notáveis ​​do efeito magnetocalórico está no elemento químico gadolínio e algumas das suas ligas. Temperatura do gadolínio aumenta quando certos campos magnéticos o envolve. Quando ele sai do campo magnético, a temperatura cai. O efeito é consideravelmente mais forte para a liga de gadolínio .[2] Liga de Praseodímio com níquel  tem um tal efeito magnetocalórico forte que permitiu que os cientistas se aproximar para dentro de um milliKelvin, um milésimo de grau de zero absoluto.[3]
    Compostos intermetálicos da família RTX (R = terra rara e X = elemento do bloco p da tabela periódica) tem despertado interesse. Os compostos desta família podem apresentar ordenamento magnético em uma ampla faixa de temperatura, variando de baixíssimas temperaturas, até temperaturas acima da ambiente.[4][5][6][7]

    Equação[editar | editar código-fonte]

    O efeito magneto pode ser quantificado com a equação abaixo:
    x

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

     +

       +   

      ,      +   

      +

    +     


    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    onde  é a temperatura,  é o campo magnético aplicado,  é a capacidade térmica do magneto (refrigerante) e  é a magnetização do refrigerante.
    Da equação podemos ver o efeito magnetocalórico pode ser alcançado através de:
    • aplicação de um grande campo
    • usando um imã com uma pequena capacidade de calor
    • utilizando um imã com uma grande alteração na magnetização versos temperatura, a um campo magnético constante

    Materiais trabalhados[editar | editar código-fonte]

    O efeito magnetocalórico é uma propriedade intrínseca de um sólido magnético. Este comportamento térmico de estado sólido para a aplicação ou remoção de campos magnéticos é maximizado quando o sólido é perto da sua temperatura de ordenação magnética.
    As magnitudes da entropia magnética e as mudanças de temperatura adiabática são fortemente dependentes do processo de ordem magnética: a magnitude é geralmente pequena em antiferromagneto, ferromagnéticos e sistemas de vidro de spin; ele pode ser substancial para ferromagnéticos normais que sofrem uma segunda ordem de transição magnética; e é geralmente maior para ferromagnetos que se submetem a uma primeira transição magnética ordem.
    Além disso, campos elétricos cristalinas e de pressão pode ter uma influência substancial sobre a entropia magnética e mudanças de temperatura adiabática.
    Atualmente, ligas de gadolínio produzindo 3 - 4 K por tesla  de mudança de um campo magnético pode ser utilizada para refrigeração magnética.
    Pesquisas recentes sobre os materiais que apresentam uma variação de entropia gigante mostrou que as ligas de  e  , Por exemplo, são alguns dos mais promissores substitutos para gadolínio e suas ligas - , etc. Estes materiais são chamados de Materiais de grande efeito magnetocalórico (MGEM). Gadolínio e suas ligas são os melhores materiais conhecidos para refrigeração magnética em temperatura ambiente, uma vez que eles passam por transições de fase de segunda ordem que não têm nenhuma histerese magnética ou térmica.[8] No entanto, os materiais, tais como a substituição  pelos os metais de terras raras tem a vantagem de custo distinta. O desenvolvimento desta tecnologia depende muito do material e provavelmente não irá substituir a compressão de vapor para a refrigeração, sem importantes melhorias nos materiais que são o custo, abundância e apresentarem maiores efeitos magnetocalóricos em uma faixa maior de temperaturas. Tais materiais devem mostrar as mudanças de temperatura significativas sob um campo de dois tesla ou menos, de modo que os magnetos permanentes podem ser utilizados para a produção do campo magnético.[9][10]

    Sais paramagnético[editar | editar código-fonte]

    O refrigerante original proposto foi um sal paramagnético, como nitrato de cério e magnésio. Os dipolos magnéticos ativos, neste caso, são os de conchas de elétrons dos átomos paramagnéticos. Em um ADR sal paramagnética, o dissipador de calor é normalmente fornecido por um bombeado  (sobre 1.2 K ) ou  (sobre 0.3 K ) ao criostato. Um facilmente atingível 1 T de campo magnético é geralmente necessária para a magnetização inicial. A temperatura mínima atingível é determinada pelas tendências auto-magnetização do sal de refrigerante, mas as temperaturas de 1 a 100 mK são acessíveis. Refrigeradores de diluição teve por muitos anos suplantaram ADRs sal paramagnéticos, mas interesse e simples de usar lab-ADRs espacial manteve-se, devido à complexidade e falta de fiabilidade do refrigerador de diluição.
    Eventualmente sais paramagnéticas tornar ou diamagnético ou ferromagnético, o que limita a temperatura mais baixa que pode ser atingida utilizando este método.

    Desmagnetização nuclear[editar | editar código-fonte]

    Uma variante de desmagnetização adiabática que continua a encontrar aplicação substancial de investigação é a refrigeração desmagnetização nuclear (NDR). NDR segue os mesmos princípios, mas, neste caso, a energia de arrefecimento surge a partir da dipolos magnéticos dos núcleos dos átomos de refrigerante, em vez das suas configurações electrónicas. Uma vez que estes são dipolos de magnitude muito menores, que são menos propensas a auto-alinhamento e têm campos mínimos inferior intrínsecas. Isto permite NDR arrefecer o sistema de spin nuclear para temperaturas muito baixas, frequentemente 1 μK ou abaixo. Infelizmente, as pequenas magnitudes de dipolos magnéticos nucleares também os torna menos inclinados a alinhar a campos externos. Os campos magnéticos de 3 teslas ou maiores são muitas vezes necessários para a etapa de magnetização inicial do NDR.
    Em sistemas NDR, o dissipador de calor inicial deve sentar-se a temperaturas muito baixas (10-100 MK). Este pré-arrefecimento é frequentemente fornecida pela câmara de mistura de um refrigerador de diluição ou um sal paramagnética.
    x

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

     +

       +   

      ,      +   

      +

    +     


    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Analisando o efeito fotoelétrico quantitativamente usando o método de Einstein, as seguintes equações equivalentes são usadas:
    Energia do fóton = Energia necessária para remover um elétron + Energia cinética do elétron emitido
    Mais detalhes em: Energia do fóton
    Algebricamente:
    x


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

     +

       +   

      ,      +   

      +

    +     


    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Onde:
    • h é a constante de Planck,
    • f é a frequência do foton incidente,
    •  é a função trabalho, ou energia mínima exigida para remover um elétron de sua ligação atômica,
    •  é a energia cinética máxima dos elétrons expelidos,
    • x

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

     +

       +   

      ,      +   

      +

    +     


    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    • f0 é a frequência mínima para o efeito fotoelétrico ocorrer,
    • m é a massa de repouso do elétron expelido, e
    • vm é a velocidade dos elétrons expelidos.
    Notas:
    Se a energia do fóton (hf) não é maior que a função trabalho (), nenhum elétron será emitido. A função trabalho é ocasionalmente designada por .
    Em física do estado sólido costuma-se usar a energia de Fermi e não a energia de nível de vácuo como referencial nesta equação, o que faz com que a mesma adquira uma forma um pouco diferente.
    Note-se ainda que ao aumentar a intensidade da radiação incidente não vai causar uma maior energia cinética dos elétrons (ou electrões) ejectados, mas sim um maior número de partículas deste tipo removidas por unidade de tempo.